This is a Fortran translation of the 64-bit version of the Mersenne Twister pseudorandom number generator
Before using, initialize the state by using call init_genrand64(seed) or call init_by_array64(init_key)
Translated from C-program for MT19937-64 (2004/9/29 version) originally coded by Takuji Nishimura and Makoto Matsumoto http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
Fortran translation by Rémi Piatek The University of Copenhagen Department of Economics email: {first}.{last}@econ.ku.dk
A C-program for MT19937-64 (2004/9/29 version). Coded by Takuji Nishimura and Makoto Matsumoto.
This is a 64-bit version of Mersenne Twister pseudorandom number generator.
Before using, initialize the state by using init_genrand64(seed)
or init_by_array64(init_key, key_length).
Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
References:
T. Nishimura, Tables of 64-bit Mersenne Twisters''
ACM Transactions on Modeling and
Computer Simulation 10. (2000) 348--357.
M. Matsumoto and T. Nishimura,
Mersenne Twister: a 623-dimensionally equidistributed
uniform pseudorandom number generator''
ACM Transactions on Modeling and
Computer Simulation 8. (Jan. 1998) 3--30.
Any feedback is very welcome. http://www.math.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove spaces)
Modified by Oscar Garcia-Cabrejo from the original Fortran source code 03-16-2025
!! author: M. Matsumoto and T. Nishimura. Modified by Oscar Garcia-Cabrejo !! date: 03/16/2025 !! version: 0.1 !! This module defines a class that encapsulates the mersenne-twister random number generator !!------------------------------------------------------------------------------- !! This is a Fortran translation of the 64-bit version of !! the Mersenne Twister pseudorandom number generator !! !! Before using, initialize the state by using !! call init_genrand64(seed) !! or !! call init_by_array64(init_key) !! !! Translated from C-program for MT19937-64 (2004/9/29 version) !! originally coded by Takuji Nishimura and Makoto Matsumoto !! http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html !! !! Fortran translation by Rémi Piatek !! The University of Copenhagen !! Department of Economics !! email: {first}.{last}@econ.ku.dk !! !!------------------------------------------------------------------------------- !! A C-program for MT19937-64 (2004/9/29 version). !! Coded by Takuji Nishimura and Makoto Matsumoto. !! !! This is a 64-bit version of Mersenne Twister pseudorandom number !! generator. !! !! Before using, initialize the state by using init_genrand64(seed) !! or init_by_array64(init_key, key_length). !! !! Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, !! All rights reserved. !! !! Redistribution and use in source and binary forms, with or without !! modification, are permitted provided that the following conditions !! are met: !! !! 1. Redistributions of source code must retain the above copyright !! notice, this list of conditions and the following disclaimer. !! !! 2. Redistributions in binary form must reproduce the above copyright !! notice, this list of conditions and the following disclaimer in the !! documentation and/or other materials provided with the distribution. !! !! 3. The names of its contributors may not be used to endorse or promote !! products derived from this software without specific prior written !! permission. !! !! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT !! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR !! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER !! OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, !! EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, !! PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR !! PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF !! LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING !! NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS !! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. !! !! References: !! T. Nishimura, ``Tables of 64-bit Mersenne Twisters'' !! ACM Transactions on Modeling and !! Computer Simulation 10. (2000) 348--357. !! M. Matsumoto and T. Nishimura, !! ``Mersenne Twister: a 623-dimensionally equidistributed !! uniform pseudorandom number generator'' !! ACM Transactions on Modeling and !! Computer Simulation 8. (Jan. 1998) 3--30. !! !! Any feedback is very welcome. !! http://www.math.hiroshima-u.ac.jp/~m-mat/MT/emt.html !! email: m-mat @ math.sci.hiroshima-u.ac.jp (remove spaces) !! !! Modified by Oscar Garcia-Cabrejo from the original Fortran source code !! 03-16-2025 !------------------------------------------------------------------------------- module mt19937_64 !! This module defines a class that encapsulates the mersenne-twister random number generator use iso_fortran_env, only: output_unit, real64, int64 implicit none private ! NOTE: genrand64_int64 is kept private, as it generates different numbers ! compared to the original C code. This is because the original C code ! uses unsigned integers, while Fortran relies on signed integers. ! This, however, has no impact on the generation of real numbers ! (they are identical to those produced by the original C code). integer, parameter :: r64 = real64 integer, parameter :: i64 = int64 integer(i64), parameter :: nn = 312_i64 integer(i64), parameter :: mm = 156_i64 integer(i64), parameter :: seed_def = 5489_i64 integer(i64), parameter :: matrix_a = -5403634167711393303_i64 integer(i64), parameter :: um = -2147483648_i64 ! most significant 33 bits integer(i64), parameter :: lm = 2147483647_i64 ! least significant 31 bits real(r64), parameter :: pi253_1 = 1._r64/(2._r64**53 - 1._r64) real(r64), parameter :: pi253 = 1._r64/(2._r64**53) real(r64), parameter :: pi252 = 1._r64/(2._r64**52) integer(i64) :: mt(nn) ! array for the state vector integer :: mti = nn+1 ! mti==nn+1 means mt(nn) is not initialized type :: mt19937 !! Class that encapsulates the mersenne-twister random number generator private integer(i64) :: mt(nn) =0_i64 ! array for the state vector integer :: mti = nn+1 ! mti==nn+1 means mt(nn) is not initialized contains procedure,public :: init_genrand64 procedure,public :: init_by_array64 generic,public :: initialize => init_genrand64,init_by_array64 procedure,public :: genrand64_real1 procedure,public :: genrand64_real2 procedure,public :: genrand64_real3 procedure,public :: genrand64_int64 end type mt19937 public :: mt19937 contains !----------------------------------------------------------------------------- ! Initializes mt(nn) with a seed subroutine init_genrand64(mt,seed) !! Initializes mt(nn) with a seed implicit none class(mt19937) :: mt !! A `mt19937` object integer(i64), intent(in) :: seed !! An integer variable with the random seed integer :: i mt%mt(1) = seed do i = 1, nn-1 mt%mt(i+1) = 6364136223846793005_i64 * ieor(mt%mt(i), ishft(mt%mt(i), -62)) + i end do mt%mti = nn end subroutine init_genrand64 ! subroutine init_by_array64(mt,init_key) !! Initializes by an array with array-length !! init_key is the array for initializing keys implicit none class(mt19937) :: mt !! A `mt19937` object integer(i64), intent(in) :: init_key(:) !! An integer array with random seeds integer(i64), parameter :: c1 = 3935559000370003845_i64 integer(i64), parameter :: c2 = 2862933555777941757_i64 integer(i64) :: i, j, k, kk, key_length call mt%init_genrand64(19650218_i64) key_length = size(init_key) i = 1_i64; j = 0_i64 k = max(nn, key_length) do kk = 1, k mt%mt(i+1) = ieor(mt%mt(i+1), c1 * ieor(mt%mt(i), ishft(mt%mt(i), -62))) & + init_key(j+1) + j i = i+1; j = j+1 if(i >= nn) then mt%mt(1) = mt%mt(nn) i = 1 end if if(j >= key_length) j = 0 end do do kk = 1, nn-1 mt%mt(i+1) = ieor(mt%mt(i+1), c2 * ieor(mt%mt(i), ishft(mt%mt(i), -62))) - i i = i+1 if(i >= nn) then mt%mt(1) = mt%mt(nn) i = 1 end if end do mt%mt(1) = ishft(1_i64, 63) ! MSB is 1; assuring non-zero initial array end subroutine init_by_array64 ! integer(r64) function genrand64_int64(mt) !! Generates a random number on [-2^63, 2^63-1]-interval implicit none class(mt19937) :: mt !! A `mt19937` object integer(i64) :: mag01(0:1) = (/0_i64, matrix_a/) integer(i64) :: x integer :: i if(mt%mti >= nn) then ! generate nn words at one time ! if init_genrand64() has not been called, a default initial seed is used if(mt%mti == nn+1) call mt%init_genrand64(seed_def) do i = 1, nn-mm x = ior(iand(mt%mt(i),um), iand(mt%mt(i+1), lm)) mt%mt(i) = ieor(ieor(mt%mt(i+mm), ishft(x, -1)), mag01(iand(x, 1_i64))) end do do i = nn-mm+1, nn-1 x = ior(iand(mt%mt(i), um), iand(mt%mt(i+1), lm)) mt%mt(i) = ieor(ieor(mt%mt(i+mm-nn), ishft(x, -1)), mag01(iand(x, 1_i64))) end do x = ior(iand(mt%mt(nn), um), iand(mt%mt(1), lm)) mt%mt(nn) = ieor(ieor(mt%mt(mm), ishft(x, -1)), mag01(iand(x, 1_i64))) mt%mti = 0 end if mt%mti = mt%mti + 1 x = mt%mt(mt%mti) x = ieor(x, iand(ishft(x,-29), 6148914691236517205_i64)) x = ieor(x, iand(ishft(x, 17), 8202884508482404352_i64)) x = ieor(x, iand(ishft(x, 37), -2270628950310912_i64)) x = ieor(x, ishft(x, -43)) genrand64_int64 = x end function genrand64_int64 ! real(r64) function genrand64_real1(mt) !! Generates a random number on [0,1]-real-interval implicit none class(mt19937) :: mt !! A `mt19937` object genrand64_real1 = real(ishft(mt%genrand64_int64(), -11), kind=r64) * pi253_1 end function genrand64_real1 real(r64) function genrand64_real2(mt) !! Generates a random number on [0,1)-real-interval implicit none class(mt19937) :: mt !! A `mt19937` object genrand64_real2 = real(ishft(mt%genrand64_int64(), -11), kind=r64) * pi253 end function genrand64_real2 real(r64) function genrand64_real3(mt) !! Generates a random number on (0,1)-real-interval implicit none class(mt19937) :: mt !! A `mt19937` object genrand64_real3 = real(ishft(mt%genrand64_int64(), -12), kind=r64) genrand64_real3 = (genrand64_real3 + 0.5_r64) * pi252 end function genrand64_real3 end module mt19937_64